IN THIS CHAPTER, YOU WILL LEARN: - . . . the meaning and measurement of the most important macroeconomic statistics: - gross domestic product (GDP) - the consumer price index (CPI) - the unemployment rate # **Gross Domestic Product: Expenditure and Income** #### Two definitions: - Total expenditure on domestically produced final goods and services. - Total income earned by domestically located factors of production. Expenditure equals income because every dollar a buyer spends becomes income to the seller. #### **The Circular Flow** ## **Gross Domestic Product: Expenditure and Income** - One caveat: - Measurement of income and expenditure is imperfect. - Difference in GDP and Gross Domestic Income (GDI) is called the "Statistical Discrepancy." See Supplement 2-1 # **Gross Domestic Product: Expenditure and Income** Figure 1 Comparing Measures of Economic Growth Source: U.S. Department of Commerce, Bureau of Economic Analysis. *Note*: Data are average annual percentage change over previous five years. #### Value added Value added: The value of output minus the value of the intermediate goods used to produce that output ## Now you TRY Identifying value added - A farmer grows a bushel of wheat and sells it to a miller for \$1.00. - The miller turns the wheat into flour and sells it to a baker for \$3.00. - The baker uses the flour to make a loaf of bread and sells it to an engineer for \$6.00. - The engineer eats the bread. Compute value added at each stage of production and GDP. #### Final goods, value added, and GDP - GDP = value of final goods produced = sum of value added at all stages of production. - The value of the final goods already includes the value of the intermediate goods, so including intermediate and final goods in GDP would be double counting. ### The expenditure components of GDP - consumption, C - investment, I - government spending, G - net exports, NX An important identity: $$Y = C + I + G + NX$$ value of aggregate total output expenditure ## Consumption (C) Definition: The value of all goods and services bought by households. Includes: - Durable goods last a long time. E.g., cars, home appliances - Nondurable goods last a short time. E.g., food, clothing - Services are intangible items purchased by consumers. E.g., dry cleaning, air travel ## U.S. Consumption, 2014 | | \$ billions | % of GDP | |-------------|-------------|----------| | Consumption | 12,002 | 68.2 | | Durables | 1,320 | 7.5 | | Nondurables | 2,691 | 15.3 | | Services | 7,990 | 45.4 | ### Investment (I) - Spending on capital, a physical asset used in future production - Includes: - Business fixed investment Spending on plant and equipment - Residential fixed investment Spending by consumers and landlords on housing units - Inventory investment The change in the value of all firms' inventories ### U.S. Investment, 2014 | | \$ billions | % of GDP | |----------------|-------------|----------| | Investment | 2,905 | 16.5 | | Business fixed | 2,244 | 12.8 | | Residential | 566 | 3.2 | | Inventory | 94 | 0.5 | ### Investment vs. capital Note: Investment is spending on new capital. Example (assumes no depreciation): - 1/1/2016: Economy has \$10 trillion worth of capital - During 2016: Investment = \$2 trillion - 1/1/2017: Economy will have \$12 trillion worth of capital #### Stocks vs. Flows A **stock** is a quantity measured at a point in time. E.g., "The U.S. capital stock was \$10 trillion on January 1, 2016." A **flow** is a quantity measured per unit of time. *E.g.*, "U.S. investment was \$2 trillion during 2016." ## **Stocks vs. Flows: Examples** | Stock | Flow | |----------------------------------|---| | a person's wealth | a person's
annual savings | | # of people with college degrees | # of new college
graduates this year | | the govt debt | the govt budget deficit | ## Now you TRY Stock or Flow? - The balance on your credit card statement - National Income - The size of your iTunes collection - The inflation rate - The unemployment rate ### **Government spending (G)** - G includes all government spending on goods and services. - G excludes transfer payments (e.g., unemployment insurance payments) because they do not represent spending on goods and services. ## U.S. Government Spending, 2014 | | \$ billions | % of GDP | |-----------------|-------------|----------| | Govt spending | 3,209 | 18.2 | | - Federal | 1,241 | 7.1 | | Nondefense | 457 | 2.6 | | Defense | 784 | 4.5 | | - State & local | 1,968 | 11.2 | ## **Net exports (NX)** - NX = exports imports - Exports: the value of goods and services sold to other countries - Imports: the value of goods and services purchased from other countries - Hence, NX equals net spending from abroad on our goods and services ## U.S. Net Exports, 2014 | | \$ billions | % of GDP | |-----------------------------------|--------------|----------| | Net Exports of Goods and Services | – 517 | -2.9 | | Exports | 2,367 | 13.4 | | Goods | 1,645 | 9.3 | | Services | 721 | 4.1 | | Imports | 2,883 | 16.4 | | Goods | 2,394 | 13.6 | | Services | 489 | 2.8 | ## Now you TRY An expenditure-output puzzle? #### Suppose a firm: - produces \$10 million worth of final goods - only sells \$9 million worth Does this violate the expenditure = output identity? ### Why output = expenditure - Unsold output goes into inventory, and is counted as "inventory investment"... whether or not the inventory buildup was intentional. - In effect, we are assuming that firms purchase their unsold output. # **GDP: An important and versatile concept** We have now seen that GDP measures: - total income - total output - total expenditure - the sum of value added at all stages in the production of final goods and services #### **GNP vs. GDP** - Gross national product (GNP): Total income earned by the nation's factors of production, regardless of where located. - Gross domestic product (GDP): Total income earned by domestically-located factors of production, regardless of nationality. - GNP GDP = factor payments from abroad minus factor payments to abroad - Examples of factor payments: wages, profits, rent, interest & dividends on assets ## Now you TRY Discussion Question In your country, which would you want to be bigger, GDP or GNP? Why? #### **GNP vs. GDP in Select Countries, 2012** | Country | GNP | GDP | GNP – GDP
(% of GDP) | |---------------|------------|------------|-------------------------| | Bangladesh | 127,672 | 116,355 | 9.7 | | Japan | 6,150,132 | 5,961,066 | 3.2 | | China | 8,184,963 | 8,227,103 | -0.5 | | United States | 16,514,500 | 16,244,600 | 1.7 | | India | 1,837,279 | 1,858,740 | -1.2 | | Canada | 1,821,424 | 1,779,635 | 2.3 | | Greece | 250,167 | 248,939 | 0.5 | | Iraq | 216,453 | 215,838 | 0.3 | | Ireland | 171,996 | 210,636 | -18.3 | GNP and GDP in millions of current U.S. dollars. #### **Other Measures of Income** - Net National Product = GNP Depreciation - National Income = NNP Statistical Discrepancy - National Income = Compensation of Employees + Proprietors' Income + Rental Income + Corporate Profits + Net Interest + Indirect Business Taxes - Note: Supplement 2-5 describes a change in definition of National Income to include Indirect Business Taxes. ### **Components of National Income, 2014** #### **Other Measures of Income** - Personal Income = National Income Indirect Business Taxes - Corporate Profits - Social Insurance Contributions - Net Interest + Dividends + Government Transfers to Individuals + Personal Interest Income - Disposable Personal Income = Personal Income Personal Tax and Nontax Payments - Disposable Personal Income is what households and noncorporate businesses have to spend (or save). #### Real vs. nominal GDP - GDP is the value of all final goods and services produced. - Nominal GDP measures these values using current prices. - Real GDP measures these values using the prices of a base year. ## Real vs. Nominal GDP: Fixed Base-Year Prices $$GDP_{t} = \sum_{i=1}^{n} P_{it}Q_{it}$$ $$RGDP_{t} = \sum_{i=1}^{11} P_{iB}Q_{it}$$ #### **Real GDP controls for inflation** - Changes in nominal GDP can be due to: - changes in prices - changes in quantities of output produced - Changes in real GDP can only be due to changes in quantities. - **One way to calculate changes in real GDP is by using fixed base-year prices. ## Measuring Economic Growth: Fixed Base-Year Prices $$\begin{split} RGDP_{t} / RGDP_{t-1} &= \sum_{i=1}^{n} P_{iB} Q_{it} / \sum_{i=1}^{n} P_{iB} Q_{it-1} \\ &= \frac{\sum_{i=1}^{n} P_{iB} Q_{it-1} \Big[Q_{it} / Q_{it-1} \Big]}{\sum_{i=1}^{n} P_{iB} Q_{it-1}} \end{split}$$ ## Measuring Economic Growth: Fixed Base-Year Prices $$RGDP_{t}/RGDP_{t-1} = \frac{\sum_{i=1}^{n} P_{iB}Q_{it-1} \left[Q_{it}/Q_{it-1}\right]}{\sum_{i=1}^{n} P_{iB}Q_{it-1}}$$ $$\left[1+g_{t}\right] = \sum_{i=1}^{n} \omega_{iB} \left[Q_{it}/Q_{it-1}\right]$$ ## **Measuring Economic Growth: Fixed Base-Year Prices** $$\left[1+g_{t}\right] = \sum_{i=1}^{n} \omega_{iB} \left[Q_{it}/Q_{it-1}\right]$$ where $$\omega_{iB} = \frac{P_{iB}Q_{it-1}}{\sum_{i=1}^{n}P_{iB}Q_{it-1}}$$ ## **Measuring Economic Growth** A problem arises when using fixed base-year weights: *Growth will vary depending on base year chosen.* Rapidly growing sectors with declining relative prices will be weighted "too much" as base year becomes further and further in the past. Opposite for slowly growing sectors. - Over time, relative prices change, so the base year should be updated periodically--which BEA used to do. - In essence, chain-weighted real GDP updates the base year every year, using an average of last year's and this year's prices, so it is more accurate than fixed base-year GDP. - Official measure of GDP now produced by BEA. - See Supplement 2-3. Step 1: $$\left[1 + g_{t}\right]_{t-1} = \frac{\sum_{i=1}^{n} P_{it-1} Q_{it-1} \left[Q_{it} / Q_{it-1}\right]}{\sum_{i=1}^{n} P_{it-1} Q_{it-1}}$$ Rewrite as: $$\left[1+g_{t}\right]_{t-1}=\sum_{i=1}^{n}\omega_{i\,t-1}\left[Q_{it}/Q_{it-1}\right]$$ Step 2: $$\left[1 + g_{t}\right]_{t} = \frac{\sum_{i=1}^{n} P_{it} Q_{it-1} \left[Q_{it} / Q_{it-1}\right]}{\sum_{i=1}^{n} P_{it} Q_{it-1}}$$ Rewrite as: $$\left[1+g_{t}\right]_{t} = \sum_{i=1}^{n} \omega_{it} \left[Q_{it}/Q_{it-1}\right]$$ Step 3: $$[1+g_t] = \{[1+g_t]_t \times [1+g_t]_{t-1}\}^{0.5}$$ To get level of real GDP, use nominal GDP for a given year and apply growth rate: $$RGDP_{t} = [1 + g_{t}][1 + g_{t-1}][1 + g_{t-2}][1 + g_{t-3}]GDP_{t-4}$$ Real GDP is measured here in year t-4 dollars. ## U.S. Nominal and Real GDP, 1960-2014 #### **GDP** deflator - Inflation rate: the percentage increase in the overall level of prices. - One measure of the price level: GDP deflator Definition: GDP deflator = $$100 \times \frac{\text{Nominal GDP}}{\text{Real GDP}}$$ ### **Deflator: Fixed-Weight Growth Measures** GDP Deflator_t = GDP_t / RGDP_t $$= \sum_{i=1}^{n} P_{it} Q_{it} / \sum_{i=1}^{n} P_{iB} Q_{it}$$ $$= \frac{\sum_{i=1}^{n} P_{iB} Q_{it} \left[P_{it} / P_{iB} \right]}{\sum_{i=1}^{n} P_{iB} Q_{it}}$$ #### **GDP** deflator GDP Deflator is a Paasche (current-weighted) index when real GDP is computed as a Laspeyres (fixed-weighted) index: GDP Deflator_t = $$\frac{\sum_{i=1}^{n} P_{iB} Q_{it} \left[P_{it} / P_{iB} \right]}{\sum_{i=1}^{n} P_{iB} Q_{it}}$$ #### **GDP** deflator Rewriting this expression gives: GDP Deflator_t = $$\frac{\sum_{i=1}^{n} \gamma_{i} \left[P_{it} / P_{iB} \right]}{\text{where } \gamma_{i} = \frac{P_{iB} Q_{it}}{\sum_{i=1}^{n} P_{iB} Q_{it}}$$ - We can compute a deflator for chain-weighted GDP in same manner used for the fixed-weight measure. - This price measure is a chain-weighted index with quantity weights updated each year, but using an average of this year's and last year's quantities. - As with the real GDP measure, the price measure updates the base year every year, ensuring the measure is never too far out of date. - See Supplement 2-3. ## NOW YOU TRY GDP deflator and the inflation rate | | Nom. GDP | Real GDP | GDP
deflator | Inflation rate | |------|----------|----------|-----------------|----------------| | 2010 | \$46,200 | \$46,200 | | n.a. | | 2011 | 51,400 | 50,000 | | | | 2012 | 58,300 | 52,000 | | | - Use your previous answers to compute the GDP deflator in each year. - Use GDP deflator to compute the inflation rate from 2010 to 2011 and from 2011 to 2012. # NOW YOU TRY Answers | | Nom. GDP | Real GDP | GDP
deflator | Inflation rate | |------|----------|----------|-----------------|----------------| | 2010 | \$46,200 | \$46,200 | 100.0 | n.a. | | 2011 | 51,400 | 50,000 | 102.8 | 2.8% | | 2012 | 58,300 | 52,000 | 112.1 — | 9.1% | ## Two arithmetic tricks for working with percentage changes 1. For any variables X and Y, percentage change in (X × Y) ≈ percentage change in X + percentage change in Y Ex.: If your hourly wage rises 5% and you work 7% more hours, then your wage income rises approximately 12%. ## Two arithmetic tricks for working with percentage changes - 2. Percentage change in (X/Y) - ≈ percentage change in X - percentage change in Y Ex.: GDP deflator = 100 × NGDP/RGDP. If NGDP rises 9% and RGDP rises 4%, then the inflation rate is approximately 5%. ## When is the Economy in a Recession? - Rule of Thumb: Two quarters of decline in Real GDP - National Bureau of Economic Research uses more nuanced approach (see Supplement 1-3): - Monthly Indicators rather than Quarterly. - "A significant decline in activity spread across the economy, lasting more than a few months, visible in industrial production, employment, real income, and wholesale-retail trade." ## **Consumer price index (CPI)** - A measure of the overall level of prices - Published by the Bureau of Labor Statistics (BLS) - Uses: - tracks changes in the typical household's cost of living - adjusts many contracts for inflation ("COLAs") - allows comparisons of dollar amounts over time #### How the BLS constructs the CPI - 1. Survey consumers to determine composition of the typical consumer's "basket" of goods - 2. Every month, collect data on prices of all items in the basket; compute cost of basket - 3. CPI in any month equals $$100 \times \frac{\text{Cost of basket in that month}}{\text{Cost of basket in base period}}$$ ## NOW YOU TRY Compute the CPI Basket: 20 pizzas, 10 compact discs | pizza | CDs | |-------|------------------| | \$10 | \$15 | | 11 | 15 | | 12 | 16 | | 13 | 15 | | | \$10
11
12 | For each year, compute: - the cost of the basket - the CPI (use 2012 as the base year) - the inflation rate from the preceding year # NOW YOU TRY Answers | | Cost of basket | CPI | Inflation rate | |------|----------------|---------|-----------------| | 2012 | \$350 | 100.0 | n.a. | | 2013 | 370 | 105.7 | 5.7% | | 2014 | 400 | 114.3 | ≥8.1% | | 2015 | 410 | 117.1 — | 2.5% | ## The composition of the CPI's "basket" For good i = 1,...,n C_i = amount of good i in the CPI's basket P_{it} = price of good i in month t E_t = cost of the CPI basket in month t $E_{\rm B}$ = cost of the basket in the base period $$CPI = \frac{E_t}{E_B} = \frac{\sum_{i=1}^{n} Q_{iB} P_{it}}{\sum_{i=1}^{n} Q_{iB} P_{iB}}$$ $$= \frac{\sum_{i=1}^{n} Q_{iB} P_{iB} \left[P_{it} / P_{iB} \right]}{\sum_{i=1}^{n} Q_{iB} P_{iB}}$$ $$CPI = \frac{E_t}{E_B} = \sum_{i=1}^{n} \gamma_{iB} \left[P_{it} / P_{iB} \right]$$ where the weights are given by: $$\gamma_{iB} = \frac{Q_{iB}P_{iB}}{\sum_{i=1}^{n} Q_{iB}P_{iB}}$$ The CPI is a weighted average of prices relative to their value in the base period. The weight on each "price relative" reflects that good's relative importance in the CPI's basket. Note that the weights remain fixed over time—the CPI is a Laspeyres Index. ### Why the CPI may overstate inflation #### Substitution bias: The CPI uses fixed weights, so it cannot reflect consumers' ability to substitute toward goods whose relative prices have fallen. #### Introduction of new goods: The introduction of new goods makes consumers better off and, in effect, increases the real value of the dollar. But it does not reduce the CPI, because the CPI uses fixed weights. #### Unmeasured changes in quality: Quality improvements increase the value of the dollar but are often not fully measured. #### The size of the CPI's bias - In 1995, a Senate-appointed panel of experts estimated that the CPI overstates inflation by about 1.1% per year. - So the BLS made adjustments to reduce the bias. - Now, the CPI's bias is probably under 1% per year. - See Supplements 2-8 and 2-9. ## NOW YOU TRY Discussion Questions - 1. If your grandmother receives Social Security, how is she affected by the CPI's bias? - 2. Where does the government get the money to pay COLAs to Social Security recipients? - 3. If you pay income and Social Security taxes, how does the CPI's bias affect you? - 4. Is the government giving your grandmother too much of a COLA? - 5. How does your grandmother's "basket" differ from the CPI's? Does this affect your answer to Q4? #### **CPI vs. GDP deflator** #### Prices of capital goods: - included in GDP deflator (if produced domestically) - excluded from CPI #### Prices of imported consumer goods: - included in CPI - excluded from GDP deflator #### The basket of goods: - CPI: fixed - GDP deflator: changes every year #### The PCE deflator - Another measure of the price level: Personal Consumption Expenditures Price Index, the ratio of nominal to real consumer spending - How the PCE is like the CPI: - only includes consumer spending - includes imported consumer goods - How the PCE is like the GDP deflator: - the "basket" changes over time - The Federal Reserve prefers PCE. #### **Core Measures of Inflation** - BLS and BEA produce measures of inflation that exclude food and energy sectors. - These are known as "Core" inflation measures. - Produced for both the CPI and the PCE Price Index. - Federal Reserve often focuses on core inflation as a better measure of underlying trends in prices. ### The GDP deflator, CPI, and PCE deflator ### Categories of the population - Employed working at a paid job - Unemployed not employed but looking for a job - Labor force the amount of labor available for producing goods and services; all employed plus unemployed persons - Not in the labor force not employed, not looking for work ### Two important labor force concepts - Unemployment rate percentage of the labor force that is unemployed - Labor force participation rate the fraction of the adult population that "participates" in the labor force, i.e. is working or looking for work - Household (Current Population) Survey used to measure these concepts # Now You TRY Computing labor statistics #### U.S. adult population by group, Dec 2014 Number employed = 147.4 million Number unemployed = 8.7 million Adult population = 249.0 million #### Calculate - the labor force - the unemployment rate - the labor force participation rate ### Now you TRY Answers Labor force L = E + U = 147.4 + 8.7 = 156.1 - Unemployment rate U/L x 100% = (8.7/156.1) x 100% = <u>5.6%</u> - Labor force participation rate L/POP x 100% = (156.1/249.0) x 100% = 62.7% # Now you TRY Computing percentage changes #### Suppose - population increases by 1% - labor force increases by 3% - number of unemployed persons increases by 2% Compute the percentage changes in the labor force participation and unemployment rates. ## NOW YOU TRY Answers LFPR = L/POP L increases 3%, POP increases 1%, so LFPR increases 3% - 1% = 2%. U rate = U/L U increases 2%, L increases 3%, so U-rate increases 2% - 3% = -1%. Note: the changes in LFPR and U-rate are shown as a percent of their initial values, not in percentage points! E.g., if initial value of LFPR is 60.0%, a 2% increase would bring it to 61.2%, because 2% of 60 equals 1.2. ## The establishment survey - The BLS obtains a second measure of employment by surveying businesses, asking how many workers are on their payrolls. - Neither measure is perfect, and they occasionally diverge due to: - treatment of self-employed persons - new firms not counted in establishment survey - technical issues involving population inferences from sample data ### Two measures of employment growth #### CHAPTER SUMMARY - Gross domestic product (GDP) measures both total income and total expenditure on the economy's output of goods & services. - Nominal GDP values output at current prices; real GDP values output at constant prices. Changes in output affect both measures, but changes in prices only affect nominal GDP. - GDP is the sum of consumption, investment, government purchases, and net exports. #### CHAPTER SUMMARY - The overall level of prices can be measured by either: - the consumer price index (CPI), the price of a fixed basket of goods purchased by the typical consumer, or - the GDP deflator, the ratio of nominal to real GDP. - The unemployment rate is the fraction of the labor force that is not employed.