

IN THIS CHAPTER, YOU WILL LEARN:

- The classical theory of inflation
 - causes
 - effects
 - social costs
- "Classical"—assumes prices are flexible & markets clear
- Applies to the long run

U.S. inflation and its trend, 1960-2014

U.S. inflation and its trend, 1960-2014

The quantity theory of money

- A simple theory linking the inflation rate to the growth rate of the money supply.
- Begins with the concept of velocity...

Velocity

- Basic concept: the rate at which money circulates
- Definition: the number of times the average dollar bill changes hands in a given time period
- Example: In 2015,
 - \$500 billion in transactions
 - money supply = \$100 billion
 - The average dollar is used in five transactions in 2015
 - So, velocity = 5

Velocity (continued)

This suggests the following definition:

$$V = \frac{T}{M}$$

where

V = velocity

T = value of all transactions

M = money supply

Velocity (continued)

 Use nominal GDP as a proxy for total transactions.

Then,
$$V = \frac{P \times Y}{M}$$

where

```
P = price of output (GDP deflator)
```

$$P \times Y = \text{value of output}$$
 (nominal GDP)

The quantity equation

The quantity equation

$$M \times V = P \times Y$$

follows from the preceding definition of velocity.

It is an identity: it holds by definition of the variables.

Money demand and the quantity equation

- M/P = real money balances, the purchasing power of the money supply.
- A simple money demand function:

$$(M/P)^d = kY$$

where

k = how much money people wish to hold for each dollar of income.

(k is exogenous)

Money demand and the quantity equation

- Money demand: (*M/P*)^d = *kY*
- Quantity equation: M × V = P × Y
- The connection between them: k = 1/V
- When people hold lots of money relative to their incomes (k is large), money changes hands infrequently (V is small).

Back to the quantity theory of money

- Starts with quantity equation
- Assumes V is constant & exogenous: $V = \overline{V}$

Then, quantity equation becomes:

$$\mathbf{M} \times \overline{\mathbf{V}} = \mathbf{P} \times \mathbf{Y}$$

$$\mathbf{M} \times \overline{\mathbf{V}} = \mathbf{P} \times \mathbf{Y}$$

How the price level is determined:

- With V constant, the money supply determines nominal GDP ($P \times Y$).
- Real GDP is determined by the economy's supplies of K and L and the production function (Chapter 3).
- The price level is
 P = (nominal GDP)/(real GDP).

- Recall from Chapter 2:
 The growth rate of a product equals the sum of the growth rates.
- The quantity equation in growth rates:

$$\frac{\Delta M}{M} + \frac{\Delta V}{V} = \frac{\Delta P}{P} + \frac{\Delta Y}{Y}$$

The quantity theory of money assumes

$$\mathbf{V}$$
 is constant, so $\frac{\Delta \mathbf{V}}{\mathbf{V}} = 0$.

 π (Greek letter pi) denotes the inflation rate:

$$\pi = \frac{\Delta P}{P}$$

The result from the preceding slide:

$$\frac{\Delta M}{M} = \frac{\Delta P}{P} + \frac{\Delta Y}{Y}$$

Solve this result for π :

$$\pi = \frac{\Delta M}{M} - \frac{\Delta Y}{Y}$$

$$\pi = \frac{\Delta M}{M} - \frac{\Delta Y}{Y}$$

- Normal economic growth requires a certain amount of money supply growth to facilitate the growth in transactions.
- Money growth in excess of this amount leads to inflation.

$$\pi = \frac{\Delta M}{M} - \frac{\Delta Y}{Y}$$

 Δ **Y/Y** depends on growth in the factors of production and on technological progress (all of which we take as given, for now).

Hence, the quantity theory predicts a one-for-one relation between changes in the money growth rate and changes in the inflation rate.

Confronting the quantity theory with data

The quantity theory of money implies:

- 1. Countries with higher money growth rates should have higher inflation rates.
- 2. The long-run trend in a country's inflation rate should be similar to the long-run trend in the country's money growth rate.

Are the data consistent with these implications?

International data on inflation and money growth

U.S. inflation and money growth, 1960-2014

U.S. inflation and money growth, 1960-2014 Inflation and money growth 14% have the same long-run trends, as the quantity theory predicts. 12% % change from 12 mos. earlier 10% 8% 6% 4% 2% 0%

1985

1990

1995

2000

2005

2010

1960

1965

1970

1975

1980

Inflation and interest rates

- Nominal interest rate, i not adjusted for inflation
- Real interest rate, r adjusted for inflation:

$$r = i - \pi$$

The Fisher effect

- The Fisher equation: $i = r + \pi$
- Chapter 3: S = I determines r.
- Hence, an increase in π causes an equal increase in i.
- This one-for-one relationship is called the Fisher effect.

U.S. inflation and nominal interest rates, 1960-2014

Inflation and nominal interest rates in 100 countries

NOW YOU TRY Applying the theory

Suppose V is constant, M is growing 5% per year, Y is growing 2% per year, and r = 4.

- a. Solve for i.
- **b.** If the Fed increases the money growth rate by 2 percentage points per year, find Δi .
- c. Suppose the growth rate of **Y** falls to 1% per year.
 - What will happen to π ?
 - What must the Fed do if it wishes to keep π constant?

ANSWERS

Applying the theory

- V is constant, M grows 5% per year,Y grows 2% per year, r = 4.
- a. First, find $\pi = 5 2 = 3$. Then, find $i = r + \pi = 4 + 3 = 7$.
- **b.** $\Delta i = 2$, same as the increase in the money growth rate.
- c. If the Fed does nothing, $\Delta \pi = 1$. To prevent inflation from rising, the Fed must reduce the money growth rate by 1 percentage point per year.

Two real interest rates

Notation:

- π = actual inflation rate (not known until after it has occurred)
- $E\pi$ = expected inflation rate

Two real interest rates:

- i Eπ = ex ante real interest rate:
 the real interest rate people expect at the time they buy a bond or take out a loan
- $i \pi = ex post$ real interest rate: the real interest rate actually realized

Money demand and the nominal interest rate

- In the quantity theory of money, the demand for real money balances depends only on real income Y.
- Another determinant of money demand: the nominal interest rate, i.
 - the opportunity cost of holding money (instead of bonds or other interest-earning assets).
- So, money demand depends negatively on i.

The money demand function

$$(\boldsymbol{M/P})^d = \boldsymbol{L}(\boldsymbol{i}, \boldsymbol{Y})$$

 $(M/P)^d$ = real money demand, depends

- negatively on *i i* is the opp. cost of holding money
- positively on Y
 higher Y increases spending on g&s,
 so increases need for money

("L" is used for the money demand function because money is the most liquid asset.)

The money demand function

$$(M/P)^{d} = L(i, Y)$$

= $L(r + E\pi, Y)$

When people are deciding whether to hold money or bonds, they don't know what inflation will turn out to be.

Hence, the nominal interest rate relevant for money demand is $\mathbf{r} + \mathbf{E}\pi$.

Equilibrium

What determines what?

$$\frac{\boldsymbol{M}}{\boldsymbol{P}} = \boldsymbol{L}(\boldsymbol{r} + \boldsymbol{E}\boldsymbol{\pi}, \boldsymbol{Y})$$

variable how determined (in the long run)

M exogenous (the Fed)

r adjusts to ensure S = I

 $Y \qquad \overline{Y} = F(\overline{K}, \overline{L})$

P adjusts to ensure $\frac{M}{P} = L(i, Y)$

How P responds to ΔM

$$\frac{M}{P} = L(r + E\pi, Y)$$

For given values of *r*, *Y*, and *Eπ*, a change in *M* causes *P* to change by the same percentage—just like in the quantity theory of money.

What about expected inflation?

- Over the long run, people don't consistently over- or under-forecast inflation, so $E\pi = \pi$ on average.
- In the short run, $E\pi$ may change when people get new information.
- E.g.: The Fed announces it will increase M next year. People will expect next year's P to be higher, so $E\pi$ rises.
- This affects P now, even though M hasn't changed yet...

How *P* responds to $\triangle E\pi$

$$\frac{\boldsymbol{M}}{\boldsymbol{P}} = \boldsymbol{L}(\boldsymbol{r} + \boldsymbol{E}\boldsymbol{\pi}, \boldsymbol{Y})$$

For given values of r, Y, and M,

$$\uparrow E\pi \Rightarrow \uparrow i$$
 (the Fisher effect)
 $\Rightarrow \downarrow (M/P)^{d}$
 $\Rightarrow \uparrow P$ to make (M/P) fall
to re-establish eq'm

The Cagan Model (appendix)

$$m_t - p_t = -\gamma (Ep_{t+1} - p_t),$$
 (A8)

$$p_{t} = \left(\frac{1}{1+\gamma}\right) \left[m_{t} + \left(\frac{\gamma}{1+\gamma}\right) Em_{t+1} + \left(\frac{\gamma}{1+\gamma}\right)^{2} Em_{t+2} + \left(\frac{\gamma}{1+\gamma}\right)^{3} Em_{t+3} + ...\right] (A9)$$

NOW YOU TRY Discussion Question

Why is inflation bad?

- What costs does inflation impose on society? List all the ones you can think of.
- Focus on the long run.
- Think like an economist.

A common misperception

- Common misperception: inflation reduces real wages
- This is true only in the short run, when nominal wages are fixed by contracts.
- (Chapter 3) In the long run, the real wage is determined by labor supply and the marginal product of labor, not the price level or inflation rate.
- Consider the data . . .

The CPI and average hourly earnings, 1965–2015

The classical view of inflation

The classical view:

A change in the price level is merely a change in the units of measurement.

Then, why is inflation a social problem?

The social costs of inflation

- ...fall into two categories:
- costs when inflation is expected
- costs when inflation is different than people had expected

The costs of expected inflation: 1. Shoeleather Cost

- Definition: the costs and inconveniences of reducing money balances to avoid the inflation tax.
- If π increases, **i** increases (why?), so people reduce their real money balances.
- Remember: In long run, inflation does not affect real income or real spending.
- So, same monthly spending but lower average money holdings means more frequent trips to the bank to withdraw smaller amounts of cash.

The costs of expected inflation: 2. Menu Costs

- Definition: The costs of changing prices.
- Examples:
 - cost of printing new menus
 - cost of printing & mailing new catalogs
- The higher is inflation, the more frequently firms must change their prices and incur these costs.

The costs of expected inflation: 3. Relative Price Distortions

- Firms facing menu costs change prices infrequently.
- Example:
 - A firm issues new catalog each January. As the general price level rises throughout the year, the firm's relative price will fall.
- Different firms change their prices at different times, leading to relative price distortions . . .
 - ... causing microeconomic inefficiencies in the allocation of resources.

The costs of expected inflation: 4. Unfair Tax Treatment

Some taxes are not adjusted to account for inflation, such as the capital gains tax.

Example:

- Jan 1: you buy \$10,000 worth of Apple stock
- Dec 31: you sell the stock for \$11,000, so your nominal capital gain is \$1,000 (10%).
- Suppose π = 10% during the year. Your real capital gain is \$0.
- Yet, you must pay taxes on your \$1,000 nominal gain!

The costs of expected inflation: 5. General Inconvenience

- Inflation makes it harder to compare nominal values from different time periods.
- This complicates long-range financial planning.

Additional cost of *unexpected* inflation: Arbitrary Redistribution of Purchasing Power

- Many long-term contracts not indexed, but based on $E\pi$.
- If π turns out different from $E\pi$, then some gain at others' expense.

Example: borrowers & lenders

- If $\pi > E\pi$, then $(i \pi) < (i E\pi)$ and purchasing power is transferred from lenders to borrowers.
- If $\pi < E\pi$, then purchasing power is transferred from borrowers to lenders.

Additional cost of high inflation: Increased Uncertainty

- When inflation is high, it's more variable and unpredictable:
 - π turns out different from $E\pi$ more often, and the differences tend to be larger, though not systematically positive or negative.
- So, arbitrary redistributions of wealth more likely.
- This increases uncertainty, making risk-averse people worse off.

One benefit of inflation

- Nominal wages are rarely reduced, even when the equilibrium real wage falls.
 - This hinders labor market clearing.
- Inflation allows the real wages to reach equilibrium levels without nominal wage cuts.
- Therefore, moderate inflation improves the functioning of labor markets.

Seigniorage

- To spend more without raising taxes or selling bonds, the government can print money.
- The "revenue" raised from printing money is called seigniorage. (pronounced SEEN-your-idge).
- The inflation tax:
 Printing money to raise revenue causes inflation.
 Inflation is like a tax on people who hold money.

Hyperinflation

- Common definition: $\pi \ge 50\%$ per month
- All the costs of moderate inflation described above become *HUGE* under hyperinflation.
- Money ceases to function as a store of value, and may not serve its other functions (unit of account, medium of exchange).
- People may conduct transactions with barter or a stable foreign currency.

What causes hyperinflation?

- Hyperinflation is caused by excessive money supply growth.
- When the central bank prints money, the price level rises.
- If it prints money rapidly enough, the result is hyperinflation.

A few examples of hyperinflation

country	period	CPI Inflation % per year	M2 Growth % per year
Israel	1983-85	338%	305%
Brazil	1987-94	1,256	1,451
Bolivia	1983-86	1,818	1,727
Ukraine	1992-94	2,089	1,029
Argentina	1988-90	2,671	1,583
Dem. Republic of Congo / Zaire	1990-96	3,039	2,373
Angola	1995-96	4,145	4,106
Peru	1988-90	5,050	3,517
Zimbabwe	2005-07	5,316	9,914

Why governments create hyperinflation

- When a government cannot raise taxes or sell bonds, it must finance spending increases by printing money.
- In theory, the solution to hyperinflation is simple: stop printing money.
- In the real world, this requires drastic and painful fiscal restraint.

Ending Hyperinflation

Time Paths of Variables:

The classical dichotomy

Real variables: Measured in physical units—quantities and relative prices, for example:

- quantity of output produced
- real wage: output earned per hour of work
- real interest rate: output earned in the future by lending one unit of output today

Nominal variables: Measured in money units, e.g.,

- nominal wage: Dollars per hour of work.
- nominal interest rate: Dollars earned in future by lending one dollar today.
- the price level: The amount of dollars needed to buy a representative basket of goods.

The classical dichotomy

- Recall: Real variables were explained in Chapter 3, nominal ones in Chapter 5.
- Classical dichotomy: the theoretical separation of real and nominal variables in the classical model, which implies nominal variables do not affect real variables.
- Neutrality of money: Changes in the money supply do not affect real variables.
 In the real world, money is approximately neutral in the long run.

- Velocity: the ratio of nominal expenditure to money supply, the rate at which money changes hands
- Quantity theory of money
 - assumes velocity is constant
 - concludes that the money growth rate determines the inflation rate
 - applies in the long run
 - consistent with cross-country and time-series data

- Nominal interest rate
 - equals real interest rate + inflation rate
 - the opp. cost of holding money
- Fisher effect: Nominal interest rate moves one-for-one with expected inflation.
- Money demand
 - depends only on income in the quantity theory
 - also depends on the nominal interest rate
 - if so, then changes in expected inflation affect the current price level

Costs of inflation

- Expected inflation
 shoeleather costs, menu costs,
 tax & relative price distortions,
 inconvenience of correcting figures for inflation
- Unexpected inflation
 all of the above plus arbitrary redistributions of
 wealth between debtors and creditors

Hyperinflation

- caused by rapid money supply growth when money printed to finance govt budget deficits
- stopping it requires fiscal reforms to eliminate govt's need for printing money

Classical dichotomy

- In classical theory, money is neutral—does not affect real variables.
- So, we can study how real variables are determined w/o reference to nominal ones.
- Then, money market eq'm determines price level and all nominal variables.
- Most economists believe the economy works this way in the long run.