Advanced Macroeconomics

Instructed by Xu & Yi

Midterm Exam II (Open-Book)

Undergraduate Program in Economics, HUST Tuesday, May/07/2019

Name:	Student ID:	

- 1. $(20' \times 5 = 100 \text{ points})$ Answer the questions below.
 - (a) Recall Equation (3.32)

$$L(i) = \left[\frac{\lambda}{p(i)}\right]^{\frac{1}{1-\phi}}.$$
 (3.32)

Suppose a monopolist is facing a demand function depicted by equation (3.32), given that her marginal cost is fixed at c, how should the monopolist set the price of its products?

(b) Recall equation (3.37):

$$\int_{\tau=t}^{\infty} e^{-r(\tau-t)} \pi(i,\tau) d\tau = \frac{w(t)}{BA(t)}.$$
(3.37)

What is the growth rate of term $\pi(i,\tau)$ along the equilibrium path of the model?

(c) Recall equation (3.41):

$$\pi(t) = \frac{1 - \phi}{\phi} \frac{\bar{L} - L_A}{\rho + BL_A} \frac{w(t)}{A(t)}.$$
 (3.41)

There is a typo (印刷错误) within the equation above, point it out.

(d) Recall equation (3.45)

$$\frac{\dot{Y}(t)}{Y(t)} = \max\left\{\frac{(1-\phi)^2}{\phi}B\overline{L} - (1-\phi)\rho, 0\right\}. \tag{3.45}$$

How does the equilibrium-path g change with population size \overline{L} ? Explain the intuition behind your results.

(e) Recall equation (3.35)

$$U = \int_{t=0}^{\infty} e^{-\rho t} \ln C(t) dt.$$
 (3.35)

Now let us rewrite the objective function as

$$U = \int_{t=0}^{\infty} \frac{C(t)^{1-\theta}}{1-\theta} dt, \quad \theta > 0.$$
 (3.35')

With equation (3.35) replaced by (3.35'), and all other settings in you textbook remained the same, solve the Romer model (Give your revised version of equation (3.43)).

1.
$$TR = P(q) \cdot q$$
. $MR = P(q) \cdot q \cdot \frac{dP(q)}{dq} = P(1 + \frac{1}{q}) = P(1 + \phi - 1)$
 $MC = C$
 $P(1) = C$
 $P(1) = C$

the monopolist will set the price of its products at &

(b).

$$\frac{\pi(ct)}{\pi(ct)} = \frac{1-\phi}{\phi} \frac{\overline{2}-2A}{A(t)} \text{ w(t)}.$$

$$\frac{\pi(ct)}{\pi(ct)} = \frac{\dot{w(t)}}{\dot{w(t)}} - \frac{\dot{A(t)}}{A(t)}.$$

$$= \frac{1-\phi}{\phi}B1A - B1A$$

$$= \frac{1-2\phi}{\phi}B1A.$$

$$LA= \frac{1}{B} \frac{\partial P}{\partial S} \frac{\partial$$

(C). Actually the equation should be:
$$\int_{T=t}^{\infty} e^{-r(T-t)} \pi (i,\tau) dT = \frac{1-\phi}{\phi} \frac{\bar{L}-4A}{\rho+BLA} \frac{W(t)}{Att},$$

(d). When population size I increases, the equilibrium-path g will also increase.

since
$$\frac{1}{\sqrt{2}}\frac{\dot{\gamma}(t)}{\dot{\gamma}(t)} > 0$$
. $\frac{\dot{\gamma}(t)}{\dot{\gamma}(t)} = \frac{1-\dot{\phi}}{\dot{\phi}}\frac{\dot{A}(t)}{\dot{A}(t)} = \frac{1-\dot{\phi}}{\dot{\phi}}\frac{\dot{A}(t)}{\dot{A}(t)} = \frac{1-\dot{\phi}}{\dot{\phi}}\frac{\dot{A}(t)}{\dot{\gamma}(t)} = \frac{1-\dot{\phi}}{\dot{\phi}}\frac{\dot$

The intuition is that when the population size increases, more people will engage in producing technology A: Thus the growth rate of A will, i increase.

(e).
$$g_{c} = \frac{\dot{c}(t)}{c(t)} = \frac{r(t)-\dot{P}}{0}$$

Then $r(t)=.\dot{P}+0$ $\frac{1-\dot{\Phi}}{\Phi}$ BLA.

 $\int_{t=t}^{\infty} e^{-r(t-t)} \pi c_{1} t dt = \frac{(1-\dot{\Phi})(1-2\dot{\Phi})}{p\dot{\Phi}+10-1+2-\dot{\Phi})\dot{\Phi}} \frac{W(t)}{BA(t)}$
 $cincle \int_{t=t}^{\infty} e^{-r(t-t)} \pi c_{1} t dt = \frac{W(t)'}{BA(t)}$

Then $\frac{(1-\dot{\Phi})(1-2\dot{\Phi})W(t)}{P\dot{\Phi}+10-1+2-\dot{\Phi})\dot{\Phi}} \frac{W(t)'}{BA(t)} = \frac{W(t)'}{BA(t)}$
 $2\dot{A} = \frac{(1-\dot{\Phi})B1-\dot{P}\dot{\Phi}}{B1\dot{\Phi}+0C1-\dot{\Phi})} \frac{(3.48')}{B1\dot{\Phi}+0C1-\dot{\Phi})}$
 $2\dot{A} = \frac{(1-\dot{\Phi})B1-\dot{P}\dot{\Phi}}{B1\dot{\Phi}+0C1-\dot{\Phi})}, 0.4$